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Abstract 

Cells polarize their movement or growth toward external directional cues in many different 

contexts. For example, budding yeast cells grow toward potential mating partners in 

response to pheromone gradients. Directed growth is controlled by polarity factors that 

assemble into clusters at the cell membrane. The clusters assemble, disassemble, and 

move between different regions of the membrane before eventually forming a stable 

polarity site directed toward the pheromone source. Pathways that regulate clustering 
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have been identified but the molecular mechanisms that regulate cluster mobility are not 

well understood. To gain insight into the contribution of chemical noise to cluster behavior 

we simulated clustering within the reaction-diffusion master equation (RDME) framework 

to account for molecular-level fluctuations. RDME simulations are a computationally 

efficient approximation, but their results can diverge from the underlying microscopic 

dynamics. We implemented novel concentration-dependent rate constants that improved 

the accuracy of RDME-based simulations of cluster behavior, allowing us to efficiently 

investigate how cluster dynamics might be regulated. Molecular noise was effective in 

relocating clusters when the clusters contained low numbers of limiting polarity factors, 

and when Cdc42, the central polarity regulator, exhibited short dwell times at the polarity 

site. Cluster stabilization occurred when abundances or binding rates were altered to 

either lengthen dwell times or increase the number of polarity molecules in the cluster. 

We validated key results using full 3D particle-based simulations. Understanding the 

mechanisms cells use to regulate the dynamics of polarity clusters should provide insights 

into how cells dynamically track external directional cues. 

  

Author summary 

Cells localize polarity molecules in a small region of the plasma membrane forming a 

polarity cluster that directs functions such as migration, reproduction, and growth. Guided 

by external signals, these clusters move across the membrane allowing cells to reorient 

growth or motion. The polarity molecules continuously and randomly shuttle between the 

cluster and the cell cytosol and, as a result, the number and distribution of molecules at 

the cluster constantly changes. Here we present an improved stochastic simulation 

algorithm to investigate how such molecular-scale fluctuations induce cluster movement 

across the cell membrane. Unexpectedly, cluster mobility does not correlate with 

variations in total molecule abundance within the cluster, but rather with changes in the 

spatial distribution of molecules that form the cluster. Cluster motion is faster when 

polarity molecules are scarce and when they shuttle rapidly between the cluster and the 

cytosol. Our results suggest that cells control cluster mobility by regulating the abundance 

of polarity molecules and biochemical reactions that affect the time molecules spend at 

the cluster. We provide insights into how cells harness random molecular behavior to 
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perform functions important for survival, such as detecting the direction of external 

signals.  

 

Introduction  

Cell migration, division, and differentiation require breaking the internal symmetry of the 

cell and establishing an axis of orientation. This symmetry breaking is referred to as 

polarity establishment. In eukaryotes, polarity establishment occurs as polarity factors, 

such as Rho-family GTPases, localize in a small region of the plasma membrane where 

they regulate the cytoskeleton to remodel cell morphology and generate motility [1]. In 

particular contexts, the polarity site can be highly dynamic. For example, migrating cells 

frequently change their direction of polarization as they navigate guided by changing 

environmental cues [2–4].  

 

Polarity establishment has been well characterized in the budding yeast Saccharomyces 

cerevisiae. Yeast polarize in the contexts of budding and mating. The first step involves 

the clustering of the conserved master regulator of polarity, the Rho-GTPase Cdc42, at a 

site on the plasma membrane often referred to as the “polarity patch”. In the context of 

mating, detection of pheromone secreted by a potential mating partner can trigger 

polarization. However, the location of the initial polarity patch is inaccurate, and often 

misaligned with respect to the pheromone source [5,6]. The patch then relocates so that 

it is adjacent to a neighboring mating partner, allowing the two cells to fuse. Relocation of 

the polarity patch occurs in two stages. Initially the polarity patch is highly dynamic, rapidly 

assembling, disassembling, and moving along the cell membrane. In the next stage, 

Cdc42 organizes into a more concentrated patch with reduced mobility [5,6]. The initial 

rapid movement of the polarity patch is thought to be an exploratory phase to locate a 

mating partner. The remaining mobility of the patch during the second stage may be 

necessary to correct errors made during the exploratory phase. This view is supported by 

the observation that in experiments using externally imposed pheromone gradients, cells 

that did not polarize toward the gradient during the exploratory phase were able to reorient 

the polarity patch in the direction of the gradient [7–12]. Investigations combining 

experimental studies with mathematical modeling showed that actin-based vesicle 
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delivery to the polarity patch is a key driver of patch movement during the second stage 

[7,13,14]. However, the mechanisms responsible for generating highly dynamic clustering 

during the exploratory phase and the transition to more stable polarity at the end of this 

stage are not well understood.   

 

Recent studies revealed that the mobility of the polarity patch during mating is correlated 

with MAPK activity [5,6]. Pheromone-induced MAPK activity triggers polarization and 

drives changes in gene expression required for mating. During the early phases of mating 

when the polarity patch is highly mobile, MAPK activity is low. As the dynamic cluster of 

Cdc42 explores the membrane and relocates to a region near a mating partner, MAPK 

activity increases and the cluster of Cdc42 at the membrane becomes stable. Hegemann 

et al. [5] proposed that MAPK activity regulates patch mobility by inducing nuclear export 

of Cdc24, the GEF (activator) for Cdc42, thereby increasing Cdc42 activation at the 

membrane. They also proposed that stochastic fluctuations in the biochemical events 

underlying Cdc42 polarization drive the mobility of the cluster during the exploratory 

phase. The plausibility of the second claim was supported using a simple stochastic 

model for cell polarization adapted from [15]. Their mathematical formulation, however, 

did not address the mechanism for cluster stabilization.   

 

To gain further insight into how chemical noise can induce cluster mobility and how cells 

can regulate cluster dynamics, we considered mechanistically detailed stochastic models 

of cell polarization. In a previous study, we used particle-based simulations to 

demonstrate that molecular-level fluctuations favor polarity establishment [16]. The 

stochastic simulations resulted in an extended parameter range over which polarity 

occurs and shorter times (1-5 min) for the emergence of a single polarity site in 

comparison to a deterministic reaction-diffusion version of the model. However, because 

particle-based simulations are computationally expensive, we were not able to address 

the stochastic behavior of the polarity patch over the time scales (10-100 min) associated 

with patch movement during yeast mating.  
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Particle-based simulations are computationally intensive because they track the position 

of every molecule in continuous space, and because simulating second-order reactions 

requires determining all pairs of molecules that are close enough to react. As an 

alternative, we represent the polarity circuit using the reaction-diffusion master equation 

(RDME), with individual simulations performed with an efficient spatial version of the 

Gillespie algorithm [17]. In this framework, space is discretized into grid units of finite size 

and molecules make diffusional jumps between adjacent grid units.  Instead of tracking 

the exact position of every molecule, the RDME tracks the number of each chemical 

species within a grid unit, and reactions occur within grid units with a propensity 

proportional to the number of molecules and a rate constant usually referred to as 

“mesoscopic rate”. This approach can result in significantly reduced computation times; 

however, it does not represent accurately microscopic reaction-diffusion systems when 

association reactions are controlled by diffusion as in most polarity establishment models. 

Scale-dependent mesoscopic rates can more accurately reproduce microscopic 

dynamics in some diffusion-controlled systems [18–20]. However, we find that such 

mesoscopic rates are still inaccurate at the high molecular densities typical of the polarity 

system. 

 

To overcome this limitation, we derived concentration-dependent mesoscopic rates 

inspired by the work of Yogurtcu et al [21]. They derived reaction rate constants that 

depend on the concentration to approximate diffusion-limited microscopic kinetics in 

homogeneous systems. We extended this method by making the mesoscopic rate 

constant dependent on the local concentration of the reactants within the grid units. We 

validated our approach in a 2D geometry by comparisons with particle-based simulations 

and applied it to study Cdc42 cluster dynamics accounting for molecular fluctuations. Key 

results were confirmed using full 3D particle-based simulations.   

 

We found that molecular-level fluctuations can induce high mobility in Cdc42 clusters 

when clusters contain low numbers of the GEF for Cdc42 (the limiting polarity factor) and 

Cdc42 rapidly cycles between the cluster and the cytosol. Cluster stabilization was 

observed when GEF abundance increased or when the rate constant for association 
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reactions between membrane-bound molecules increased. Accelerating such reactions 

stabilized clusters mainly by increasing the dwell time of Cdc42 or GEF molecules at the 

polarity patch. Interestingly, increasing the rate constant for formation of the Cdc42-GEF 

complex produced a switch-like transition in patch dynamics, suggesting its regulation 

may underlie patch stabilization during yeast mating. 

 

Results  

A. An improved approach for stochastic reaction-diffusion simulations 

A. 1. Background. We previously studied the effect of molecular-level fluctuations on the 

dynamics of polarity establishment using particle-based simulations [16]. In this approach, 

the Brownian motion of individual molecules occurs in continuous space and discrete time 

intervals of length Δt (Fig 1A). Within any time interval Δt, second-order reactions of the 

form A+B → C occur with probability  Δt if A and B are within a capture distance , which 

is typically determined by the size of the reacting molecules. While particle-based 

simulations constitute a high-resolution representation of biochemical systems, they are 

computationally expensive, making it unfeasible to study systems with large number of 

molecules over long time scales. 

 

A computationally efficient alternative to particle-based modeling are simulations of the 

reaction-diffusion master equation (RDME) performed with an efficient spatial version of 

the Gillespie algorithm [17]. In RDME-based simulations, space is discretized into 

individual compartments, or grid elements, that can be occupied by multiple molecules 

(Fig 1B). Molecules can jump to adjacent grid elements with a propensity proportional to 

the diffusion coefficient (see Methods) and reactions occur with a propensity proportional 

to the molecular abundances of the reactants within the grid element and a mesoscopic 

rate constant kmeso. Spatial Gillespie simulations are referred to as a mesoscopic 

approach in the sense that the size of the grid elements is normally larger than the size 

of a molecule (microscopic scale), but still significantly smaller than the whole system 

(macroscopic scale).  
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Figure 1. Schematic of the simulation of a generic bimolecular reaction A + B → C using a 

particle-based method and the spatial Gillespie approach. In the particle-based simulations 

(A) molecules undergo a random walk in continuous space and discrete time intervals Δt. If a pair 

of reacting molecules are within a distance  characteristic of their size, they react with probability 

 Δt during an interval Δt. In the spatial Gillespie approach (B), the domain is discretized using a 

grid, here with square elements of size h. Molecule jumps to adjacent grid elements and reactions 

take place sequentially at random times as a realization of the reaction-diffusion master equation. 

The propensity of a reaction within a grid element i is proportional to the number of molecules 

(ni
A, ni

B) and a mesoscopic rate constant kmeso. (C) By setting kmeso equal to the scale-dependent 

mesoscopic rate kh, the mean association time of two molecules matches between the reaction-

diffusion master equation and an analogous microscopic representation. (D) A concentration-

dependent mesoscopic rate ki
c for the grid element i is estimated as 1/i

c where i
c is the mean 

association time in a microscopic representation of two molecules diffusing in a domain with area 

Ai
c. A

i
c is the mean free area between the most abundant reactant in the grid element i (further 

details in the main text and Methods section). 

 

A problem with RDME simulations is that results depend on the spatial discretization and 

can deviate from more accurate microscopic models (e.g. particle-based simulations) 

especially when second-order reactions are controlled by diffusion [22]. This issue was 
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addressed recently through the derivation of scale-dependent mesoscopic rate constants 

that ensure compliance with the microscopic kinetics in the limit of low molecular 

abundances [18–20]. Specifically, a generic system is considered consisting of a spatial 

domain containing two diffusing molecules that can undergo an association reaction. A 

mesoscopic rate is then derived using the requirement that the mean association time for 

the mesoscopic description is equivalent to that of the microscopic representation (Fig 

1C, Methods). This “scale-dependent” mesoscopic rate constant depends on the grid 

element size h. If the association reaction is reversible, a mesoscopic dissociation rate is 

computed by ensuring that the equilibrium behavior of the mesoscopic description is 

identical to that of the microscopic representation.  

 

In Section A.2. we evaluate the scale-dependent mesoscopic rate kh derived in [19,20] by 

looking at simulations of simple reaction schemes and comparing the results with particle-

based simulations. We note that although kh yields accurate results at low concentrations, 

it shows significant deviations from particle-based simulations in scenarios with high 

molecular abundances. In Section A.3. we propose a concentration-dependent 

mesoscopic rate kc that accurately simulates systems over a broad range of 

concentrations. In Section A.4 we evaluate both kh and kc in a biochemical model for 

polarity establishment in yeast.    

 

A.2. Evaluation of the scale-dependent mesoscopic rate kh. To benchmark spatial 

Gillespie simulations using kh, we compared their predicted kinetics with particle-based 

simulations. We initially focused on two prototypical reactions: irreversible association 

A+B → C and reversible association A+B ↔ C in diffusion-controlled regimes. As our goal 

is to model reaction and diffusion at the cell membrane, simulations are performed in a 

2D domain with periodic boundary conditions.  

 

We present timeseries of the mean number of molecules of one of the reactants in Fig 2, 

A-D. At low concentrations of reactants, simulations using kh closely approximated results 

from particle-based simulations for both irreversible and reversible second-order 

reactions (Figs 2 A,B). At higher concentrations, however, the early kinetics of both the 
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Figure 2. Spatial Gillespie simulations of the reactions A+B → C and A+B ↔ C using the 

mesoscopic rates kh and kc are benchmarked against particle-based results. We present 

the mean total number of species A as a function of time. (A-D) show spatial Gillespie simulations 

using the mesoscopic rate kh with initial low abundance of reactants in (A, B) (total A = total B = 

5, total C = 0 at t=0) and initial high abundance (total A = total B = 5000, total C = 0 at t=0) in (C-

D). (E-H) show corresponding simulations to (A-D) but using the mesoscopic rate kc. In all the 

simulations, the degree of diffusion control is kmicro/Dtot = 50, with Dtot = 2D and D = 0.0025m2/s. 

The size of the domain is L = 1m,  = 0.005m. For the reversible reaction A+B ↔ C, the 

microscopic dissociation rate constant kd
micro is 1/s in (B, F), and 10/s in (D, H). 
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reversible and irreversible reactions showed significant deviations from the particle-based 

results (Figs 2 C,D). At later times the deviations are reduced as the number of molecules 

decreases. We note that it is not possible to achieve higher accuracies by reducing the 

size of the grid elements, because for this parameter regime, it is not possible calculate 

kh for h smaller than ~5 (Methods) [19,20].  

 

We also computed timeseries of the standard deviation to quantify the fluctuations around 

the mean for each case in Figs 2 A-D (S1 A-D Figs). This metric also showed agreement 

between spatial Gillespie simulations using kh and particle-based simulations at low 

concentrations, and increased deviations at high concentrations at early times. Overall, 

the mesoscopic approach using kh provides a good approximation to the microscale 

dynamics for irreversible and reversible diffusion-controlled reactions only if the density 

of reactants is low. 

 

To understand why kh showed accurate results for systems with low abundances but 

loses accuracy at high concentrations, remember that kh was derived to precisely 

reproduce the association time in a two-molecule system (Fig 1C, Methods). In a diluted 

system containing n pairs of reacting molecules, the expected time for an association 

event is similar to that in a set of n independent 2-molecule systems, and simulations 

using kh provide a good approximation of the kinetics. At high concentrations, however, 

molecules are more likely to associate with partners in their vicinity before diffusing over 

a significant portion of the spatial domain. Because the derivation of kh does not consider 

such multi-molecule effects, simulations lose accuracy.     

 

A.3. A concentration-dependent mesoscopic rate kc improves accuracy at high 

concentrations. To improve accuracy at high concentrations, we applied a 

concentration-dependent rate constant kc = 1/c, where c is the mean association time of 

two molecules within an effective area Ac. Ac is the mean free area between molecules of 

the more abundant reactant in the grid element (Fig 1D, Methods) and is estimated as 

the grid element area h2 divided by the number of molecules of the more abundant 
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reactant. This approach was inspired by the work of Yogurtcu et al [21], in which the 

authors estimated a concentration-dependent rate constant for spatially homogeneous 

systems. In our simulation approach, kc depends on the local concentration through Ac
 in 

each grid element, and therefore it changes in space and time as the system evolves. 

   

For the case of reversible second-order reactions, a concentration-dependent 

mesoscopic dissociation rate kc
d is estimated in a similar way as for kh

d. That is, the 

equilibrium behavior of a two-species system in the mesoscopic representation is 

matched to that of the microscopic formulation for a pair of molecules diffusing in a domain 

with area Ac (Methods).  

 

Even though kc was derived to provide accurate results at high concentrations, it also 

showed accurate results for low molecular abundances in the reaction A + B → C (Fig 

2E). In the reversible reaction A+B ↔ C, simulations showed deviations that decreased 

with smaller grid element size h (Fig 2F). At high molecular abundance, kc showed 

increased accuracy compared to kh in both irreversible and reversible reactions (compare 

Figs 2 C,D and 2 G,H). The increase in accuracy using kc was also observed in the 

fluctuations around average concentrations (S1 C,D and S1 G,H Figs). 

 

A.4 Evaluation of mesoscale simulations in a model of the yeast polarity circuit. We 

next evaluated the mesoscale rates kh and kc in a reaction-diffusion model for polarity 

establishment in budding yeast adapted from [23] (Fig 3A). Central to this biochemical 

network is the Rho-GTPase Cdc42. Cdc42 can exist in an inactive (GDP bound) form 

Cdc42D that shuttles between the membrane and the cytosol, and an active (GTP bound) 

form Cdc42T that localizes to the cell membrane. Deactivation occurs as Cdc42 

hydrolyzes GTP into GDP, a process accelerated by GTPase activating proteins (GAPs).  

GAP activity is considered implicitly using a pseudo-first order deactivation rate constant. 

The activation of Cdc42 is catalyzed by the guanine nucleotide exchange factor Cdc24 

(GEF) that binds Cdc42D and facilitates the exchange of GDP for GTP. GEF molecules 

can shuttle between membrane and cytosol, and at the membrane they activate Cdc42. 

Once GEF binds Cdc42D, it activates the Rho-GTPase and dissociates from the resulting 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404657
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

 

Figure 3. Cdc42 polarization in yeast simulated with particle-based simulations and spatial 

Gillespie simulations using the mesoscopic rates kh and kc. (A) Reactions in a model for 

polarization in budding yeast. Species that are not bound to the membrane (brown), dwell in the 

cytosol. Membrane and cytosol are represented in the simulations as juxtaposed 2D squared 

domains. (B) Time series of a particle-based simulation of the polarization model in (A). In each 

snapshot, red dots show the positions on the membrane of all active Cdc42 molecules (Cdc42T 

and Cdc42T-GEF). The lower panels in (B) show a quantification of active Cdc42 clustering using 

the H(r) function (see Methods for details). (C, D) Spatial Gillespie simulations using kh (C) and kc 

(D) with the same model parameters as the particle-based simulation in (A) and grid element size 

h = 5. Pseudo-coordinates for each molecule are randomly sampled from the containing grid 

element and displayed as a red dot to facilitate comparison with particle-based simulations. Model 

parameters are presented in Table 1.          

 

Cdc42T in a single step. There is positive feedback in the levels of active Cdc42 because 

Cdc42T can bind a GEF molecule forming a complex Cdc42T-GEF that can activate 

neighboring Cdc42D molecules. In this model Cdc42T can recruit both membrane-bound 

and cytosolic GEF molecules. In the following simulations, membrane and cytosol are 

represented as coincident 2D square domains. What distinguishes the membrane and 

cytosol are the diffusion coefficients for the molecular species in each domain. The 
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parameters were adapted from a 3D macroscopic model [13,23] into a 2D microscopic 

representation (Methods) and are presented in Table 1.  

 

Particle-based simulations initialized with all Cdc42 and GEF molecules randomly located 

in the cytosol evolved into a polarized distribution of total Cdc42T (Cdc42T and Cdc42T-

GEF) at the membrane (Fig 3B) [16]. At early times, small fluctuations in the levels of 

Cdc42T are amplified by positive feedback reactions resulting in growing clusters of the 

active Rho-GTPase (Fig 3B 10 s). Several clusters can form that compete for polarity 

factors in the cytosol until just one cluster remains (Fig 3B, 60 s - 120 s). The remaining 

cluster grows, depleting polarity factors in the cytosol, until a steady state is reached when 

the inward and outward fluxes of molecules to the cluster balance (Fig 3B 120 s – 300 s). 

 

In Figs 3C and 3D we present snapshots of representative mesoscopic simulations using 

the scale-dependent (kh) and concentration-dependent (kc) rates, respectively. To 

facilitate comparison with particle-based simulations, spatial pseudo-coordinates for each 

molecule were obtained by randomly sampling within the grid element containing the 

molecule. Mesoscopic simulations using both kh and kc reached a steady-state polarity 

cluster (Figs 3 C,D 300 s) with a size comparable to that of the particle-based simulation 

in Fig 3A. There were differences, however, in the time evolution of polarization between 

the different methods. The simulation using kh took longer to evolve into a single polarity 

cluster, while the simulation using kc polarized faster compared to the particle-based 

approach. We note that these simulations were run using a grid element h = 5 which 

corresponds to the finest grid possible using kh. 

 

To quantify the dynamics of polarization we measured clustering of total Cdc42T with the 

function H(r) (Fig 3B lower panels) [16,24,25] (Methods). H(r) has the desired properties 

that H(r) = 0 for a random distribution of molecules, and for a clustered distribution, H(r) 

shows a maximum at a value r = rmax which provides a measure of the cluster size. H(r) 

showed a maximum at r = 1.1 m that increased over time (Fig 3B lower panels). We 

therefore chose H(r = 1.1 m) as a metric for polarization. We note that quantifying 

clustering with max H(r) does not qualitatively change the results. In Fig 4A we show the 
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Figure 4. Spatial Gillespie simulations using the mesoscopic rates kh and kc are 

benchmarked against particle-based simulations by looking at Cdc42 polarization 

dynamics and equilibrium. (A) Time evolution of the clustering of total active Cdc42 from 

simulations of the polarity model in Fig 3A with parameters in Table 1. We contrast results from 

particle-based simulations and the spatial Gillespie approach using either kh or kc and a grid 

element size h = 5. Clustering at a particular timepoint is quantified as the mean of H(r = 1.1m) 

over 30 simulations. Uncertainty intervals are computed as mean ± standard deviation and 

presented as a shaded region enveloping the mean. (B) Clustering at equilibrium from simulations 

in (A) for different values of the total amount of GEF. The clustering at equilibrium is computed 

as the mean of H(r = 1.1m) between 250s and 300s. The box plots were generated with the 

clustering at equilibrium from 30 simulations. (C) and (D) are corresponding figures to (A) and (B) 

respectively, the only difference is that the spatial Gillespie simulations are run with h = 2.5 and 

using only kc as kh cannot be computed for such h in this model (see Methods).  

 

time evolution of the mean of H(r = 1.1 m) over different realizations for the different 

simulation methods. The shading indicates standard deviation to illustrate the variability 

in polarization dynamics. At early times, simulations using kh matched particle-based 

simulations but showed deviations at later times, taking longer to polarize. On the other 

hand, simulations using kc displayed overall faster polarization than the other methods. 

By defining the polarization time as the moment when the standard deviation stabilizes, 
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it is apparent that simulations using kh have a longer time of polarization (240 s) compared 

to particle-based simulations (180 s), while using kc results in faster polarization (130 s).  

 

We further characterized the simulation approaches by looking at the equilibrium behavior 

for different amounts of available GEF molecules (Fig 4B). For high amounts of GEF all 

the methods showed polarization, but as the number of GEF molecules was reduced, 

simulations remained in a non-polarized state. While particle-based simulations efficiently 

polarized for GEF amounts greater than 300, mesoscopic simulations using kh polarized 

for numbers of GEF greater than 100, showing polarization in a regime where the 

microscopic simulations do not spontaneously polarize. On the other hand, mesoscopic 

simulations using kc showed polarization for GEF amounts greater than 400, failing to 

polarize at a value of 400 GEF where the microscopic approach shows polarization.  

 

As the mesoscopic simulations with both kh and kc presented in Figs 4A and 4B showed 

discrepancies with respect to particle-based simulations, we sought to obtain more 

accurate results by reducing the grid element size, which so far was set to h = 5. We 

were able to do this only for simulations with the concentration-dependent rate kc, 

because for the parameters of the model, kh cannot be computed for grid elements 

smaller than 5 (see Methods). For h = 2.5 we observed a significant improvement in 

accuracy using kc both in the dynamics of polarization (Fig 4C) and in the equilibrium 

behavior for different values of the number of GEF molecules (Fig 4D).  

 

The increase in accuracy using h = 2.5  came with a cost of ≈ 5X increase in computation 

time with respect to simulations using h = 5. Particle based simulations, on the other 

hand, were ≈ 10X more computationally expensive with respect to mesoscopic 

simulations using h = 5. We note that particle-based simulations were performed with 

the highly optimized simulation platform Smoldyn [26,27], whereas mesoscopic 

simulations were run using our own custom written C code, which has not been optimized 

for computational performance.      

 

B. Mechanisms regulating mobility of the polarity site 
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B1. Requirements for high patch mobility. When yeast cells are presented with 

pheromone from a potential mating partner, Cdc42 forms dynamic clusters that explore 

the membrane for 10-100 min before stabilizing in a region close to the pheromone source 

[5,6]. To efficiently and accurately characterize polarity cluster dynamics over 

physiologically relevant timescales, we used spatial Gillespie simulations with 

concentration-dependent rates kc for bimolecular reactions.  

 

To assess the mobility of the polarity cluster we tracked the centroid of the distribution for 

active Cdc42 over time (Fig 5A). To illustrate patch movement, we marked the initial 

position of the patch centroid using a green dot and its current position using a black dot. 

With our initial parameterization (Table 1), however, the patch did not move significantly 

over a 60 min time interval. It has been suggested that the amount of GEF in the cytosol 

strongly regulates cluster dynamics [5]. To investigate this effect, we ran simulations with 

different GEF levels, computed the mean squared displacement (MSD) of the patch 

centroid and used these values to estimate an effective diffusion coefficient (Dpatch) for 

the patch (Fig 5B). Decreasing GEF abundance increased patch mobility, but the system 

lost polarity at moderate GEF levels (≈ 450 molecules) before patch movement increased 

substantially. Therefore, we investigated if varying any of the rate constants would allow 

the system to polarize at lower GEF abundances. After testing all the reactions in the 

model, we observed that the following modifications allowed the system to polarize with 

low GEF abundances (100 or less molecules): 1) decreasing the rate constant k2b for 

Cdc42T deactivation, 2) decreasing the rate constant of dissociation of the Cdc42T-GEF 

complex k4b, 3) increasing the rate constant k5a for membrane binding of cytosolic Cdc42D 

and 4) increasing the rate constant k6 for association of Cdc42T with cytosolic GEF to 

form the Cdc42T-GEF complex (S2 Fig). We computed patch mobility in simulations 

where both k2b and k5a where modified, which resulted in polarization down to 15 GEF 

molecules (Figs 5 C,D) and in simulations where k6 was increased (Figs 5 E,F). 

Interestingly, as the total GEF abundance was decreased, only increasing k6 generated 

highly mobile patches (compare Figs 5D and 5F which are representative realizations 

from the points indicated by the red arrows in Figs 5C and 5E).  
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Figure 5. Direct recruitment of polarity factors to the patch enables highly mobile clusters 

at low GEF abundances. (A) Snapshots of the distribution of total active Cdc42 over a 1hr 

simulation. The black dot in each frame is the centroid of the polarity cluster, and the green dot is 

the centroid when the polarity cluster first formed. (B) Diffusivity of the centroid of the polarity 

patch (Dpatch) as a function of the total amount of GEF molecules in the simulations. Dpatch was 

obtained from the mean squared displacement (MSD) of the patch centroid  by fitting the equation 

MSD(Δti) = 4Dpatch Δti  to the data, where Δti is a particular time interval, and  reflects the degree 

of anomalous diffusion. (C) Patch diffusivities as a function of total GEF for simulations where k2b 
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has been decreased by a factor of 1/16 and k5a has been increased by a factor of 10 relative to 

the parameters in Table 1. For these simulations  ≈ 1. (D) Snapshots from a representative 

simulation in (C) as indicated by the red arrow. (E) Patch diffusivities as a function of total GEF 

for simulations where k6 has been increased to either 1 m2/s or 50 m2/s. With k6 = 1 m2/s 

polarization is lost when the number of GEFs is below 200. With k6 = 50 m2/s the simulations 

show polarization at even lower GEF amounts, in this case,  varied between 0.85 and 1. (F) 

Snapshots from a representative simulation in (E) as indicated by the red arrow. (G) Patch 

diffusivities as a function of total GEF after adding Reaction 7 to the model.  values were ≈ 0.85 

for the two data points with highest mobilities, and close to 1 for the other points. (H) Snapshots 

from a representative simulation in (G) as indicated by the red arrow. Error bars for patch centroid 

diffusivities are standard errors from the least-squares fit use to compute Dpatch.          

 

The rate constant k6 governs the direct recruitment of cytosolic GEF to the patch through 

complex formation with Cdc42T. This reaction can occur rapidly, because diffusion in the 

cytosol is fast compared to diffusion in the membrane. Another potentially fast reaction 

not considered in the model is the recruitment of cytosolic Cdc42D directly to the patch. 

In cells, most inactive Cdc42 molecules are found in the cytosol bound to GDI proteins 

that hold them in their inactive state. In our model, for a cytosolic Cdc42D molecule to be 

activated it must first be inserted in the membrane, a step implicitly representing 

dissociation from the GDI protein. Once at the membrane Cdc42D has to laterally diffuse 

to react with a GEF. However, prior work has suggested that GEFs may displace Rho-

GTPases from their GDI proteins [28,29]. Based on this observation, we updated our 

model to include a reaction where Cdc42T-GEF recruits and activates cytosolic Cdc42D 

(Fig 5G). An analogous reaction was included in a model for polarization by Klunder et 

al. (2013). Using a rate constant comparable to the one employed by Klunder et al. (2013) 

and maintaining the original values of the other rate constants, we observed high mobility 

of the polarity patch for low GEF abundances (Figs 5 G,H). Our results support the 

hypothesis that direct recruitment of fast diffusing cytosolic polarity factors to the patch 

promotes mobility of the polarity cluster.    

 

To gain insight into the mechanism that generates a dynamic patch, we investigated 

several different patch properties. We first observed that the models shown in Figs 5C 

and 5G, which have substantially different patch mobility at low GEF abundance 

(replotted in Fig 6A on a log-log scale as “High mobility” and “Low mobility” models), have  
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Figure 6. Cluster mobility correlates with rapid fluctuations in the distribution of active 

Cdc42 and is facilitated by short dwell times of Cdc42 at the patch and low GEF 

abundances. Comparison of different metrics as a function of total GEF molecules for a “Low 

mobility” model (from Fig 5C) where k2b has been decreased X/16 and k5a has been increased 

10X, and a “High mobility” model (from Fig. 5G) that includes Reaction 7. (A) Patch centroid 

diffusivities, (B) Mean number of total Cdc42T, (C) coefficient of variation (CV) of total Cdc42T, 
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(D) mean number of Cdc42T-GEF, (E) CV of Cdc42T-GEF, (F) dwell time of Cdc42T at the 

cluster, (G) Snapshots of the lateral profile of the concentration of total Cdc42T molecules for the 

High mobility model and (H) Low mobility model. (I) Coefficient of variation of the distribution of 

total Cdc42T molecules, CVpatch (see Methods), as a function of the number of total GEF 

molecules. (J) Patch centroid diffusivity as a function CVpatch for the Low mobility and High mobility 

models. Error bars for patch centroid diffusivities are standard errors from the least-squared fit 

used to compute Dpatch. For all other quantities, the error bars are the standard deviation from 

estimations in 5 independent simulations.  

 

comparable amounts of total active Cdc42 and Cdc42T-GEF (the predominant state of 

GEF molecules at the patch) (Figs 6 B,C). The fluctuations in the total amount of active 

Cdc42 and Cdc42T-GEF, quantified as the coefficient of variation (CV) were overall 

comparable as well (Fig 6 D,E). We then evaluated the dwell time of Cdc42T at the 

membrane (see Methods) for the high and low mobility models (Fig 6F). The dwell time 

of Cdc42T was shorter in the high mobility model, indicating a faster cycling of Cdc42 

between the cluster and the cytosol as compared to the low mobility model. We also 

observed that the shape of the patch fluctuates strongly in the high mobility model at low 

GEF levels (Fig 6G), while the low mobility model shows a more consistent distribution 

(Fig 6H). We quantified the variation over time in the distribution of Cdc42T (CVpatch) (see 

Methods) and observed that the behavior of CVpatch is qualitatively similar to that of Dpatch 

(Fig 6I). In fact, a plot of Dpatch and CVpatch with data from the two models shows that these 

two quantities are highly correlated (Fig 6J). These results indicate that patch mobility is 

correlated with spatial fluctuations in the Cdc42T distribution, rather than average 

fluctuations in the total abundance of Cdc42T or its GEF at the polarity patch. The 

fluctuations in the Cdc42T distribution are stronger when GEF abundance is low and 

Cdc42 cycles rapidly between the cluster and the cytosol. 

 

B.2. Potential mechanisms for regulating polarity cluster dynamics. During mating, 

the polarity site transitions from being highly mobile to a more stable state. Therefore, we 

investigated mechanisms that could be used to regulate patch movement. Our simulation 

results indicate that increasing GEF abundance can reduce patch mobility (Figs 5E and 

5G). We note that increasing k6 or adding Reaction 7 in our model enabled highly mobile 

clusters at low GEF abundances, but reversing such reaction modifications while keeping 
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low GEF numbers eliminates polarization instead of stabilizing the patch (see for example 

Fig 5E, k6 = 1 m2/s). After evaluating how all the reactions in the model affect patch 

mobility (S3 and S4 Figs, Fig 7 ) we found that the following reactions can substantially 

and robustly modulate cluster mobility: activation of Cdc42Dm by GEFm (k2a), activation of 

Cdc42Dm by Cdc42T-GEF (k3) and association of Cdc42T with GEFm to form the Cdc42T-

GEF complex (k4a). We note that these reactions all involve the association between two 

membrane-bound molecules.  

 

To investigate the role of Reactions 2a, 3 and 4a in stabilizing the polarity site, we set the 

rate constants for the other two either to zero (k3 and k4a) or a very small value (as for k2a 

a minimal value is required to start Cdc42 activation) and varied the rate constant for the 

remaining reaction and the GEF abundance (Figs 7 A-C). In each case, at a low value of 

the reaction rate, we observed a mobile cluster even for high GEF abundances. 

Increasing k2a, or k3 could stabilize dynamic polarity patches (Fig 7 A,B) for GEF levels of 

200 and above, while increasing k4a stabilized a patch even for GEF = 100. To gain insight 

into how reaction kinetics modulate patch mobility we computed the total numbers (Figs 

7 D-F) and dwell times (Figs 7 G-I) of Cdc42T and Cdc4T-GEF at the patch for the points 

enclosed in the dashed rectangles in Figs 7 A-C. Each pair of enclosed points correspond 

to a highly mobile and a stable patch resulting from two different values of the 

corresponding rate constant. Increasing k2a or k3 modestly increased the numbers of 

Cdc42T and Cdc42T-GEF and lengthened the dwell time of Cdc42T. On the other hand, 

increasing k4a moderately increased Cdc42T levels but drastically increased the 

abundance and dwell time of Cdc42T-GEF. These results suggest that increasing the 

rates k2a and k3 stabilize the patch mainly by lengthening the dwell time of Cdc42 at the 

patch, while higher k4a reduces cluster mobility by increasing both the abundance and 

dwell time of GEF at the patch.  

 

From Fig 7 A-C it is also apparent that increasing k4a is a more potent way to stabilize a 

mobile patch in comparison to increasing k2a and k3. This observation led us to investigate 

in more detail how patch mobility depended on k4a. With the original parameters of the  
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Figure 7. Increasing the association rate constants between molecules at the membrane 

stabilizes mobile clusters by prolonging the dwell time of polarity factors at the patch. 

Patch centroid diffusivity (Dpatch) as a function of the total number of GEF molecules and k2a (A), 

k3 (B), k4a (C). The size of the dots reflects the magnitude of Dpatch as indicated in the legend at 

the bottom-left. For each case, the value of the other two rate constants is shown above the panel. 

(D-F) Abundance of Cdc42T (black) and Cdc42T-GEF (blue) for the corresponding points 

enclosed by dashed boxes in (A-C). (G-I) Dwell times at the membrane of Cdc42T (black) and 

Cdc42T-GEF (blue) for the corresponding points enclosed by dashed boxes in (A-C). Error bars 

are the standard deviation from estimations in 10 independent simulations.      

 

updated model (including Reaction 7), setting k4a equal to zero resulted in an increase of 

more than an order of magnitude in patch mobility for low GEF abundances (Fig 8A). 

Varying k4a for GEF=100 resulted in an abrupt change in cluster mobility around a value 

of 0.003 m2/s (Fig 8B). This transition is likely caused by a synergistic increase in GEF 

abundance and dwell time at the patch as k4a increases (Figs 7 C,F,I). After this sharp 
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Figure 8. Increasing the rate constant of Cdc42T-GEFm association (Reaction 4a) induces 

an abrupt change in patch mobility. (A) Patch centroid diffusivity as a function of the number 

of GEF molecules for the model that includes Reaction 7 (Updated model, black) and the same 

model but setting k4a = 0 (red). (B) Patch diffusivity as a function of k4a for simulations with GEF = 

100. Error bars are standard errors from the least-squared fit used to compute Dpatch. 

 

decrease, the mobility of the patch gradually increased with increasing k4a and appeared 

to plateau as the reaction becomes limited by diffusion.  

 

C. Validation through 3d particle-based simulations 

So far, all our results have been obtained using 2D simulations with periodic boundary 

conditions and assumed the only difference between the membrane and cytosol is the 
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rate at which molecules diffuse. However, real yeast cells are 3D objects with distinct 

membrane and cytosolic compartments. Therefore, to ensure our results remained valid 

  

 

Figure 9. 3D particle-based simulations recapitulate 2D spatial Gillespie simulations 

results from Fig 8. (A) Snapshots of 3D particle-based simulations for different values of k4a. 

Cdc42T molecules are shown as red dots on a spherical surface representing the cell membrane. 

Rate constants are estimated from the ones used in Fig 8B as described in the Methods. 

Parameters are presented in Table 1. (B) Patch centroid diffusivity as a function of k4a for 3D 

particle-based simulations (red) with GEF = 100. For comparison we also show results from 2D 
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spatial Gillespie simulations in Fig 8. Error bars are standard errors from the least-squared fit 

used to compute Dpatch.  

 

in 3D, we used Smoldyn [26,27] to perform particle-based simulations on a sphere and 

we translated 2D parameters to 3D as described in the Methods. Because varying the 

rate constant k4a had the largest effect on patch mobility, we chose to validate these 

results. In agreement with our 2D simulations, low values of k4a produced a mobile polarity 

patch and patch mobility decreased rapidly with increasing values of this rate constant 

(Fig 9A). Indeed, in the 3D particle-based simulations, patch mobility as a function of k4a 

showed a similar trend as compared to results from the 2D spatial Gillespie simulations 

(Fig 9B). For low values of k4a, Dpatch is high and rapidly decreases as k4a increases until 

a minimum value is reached. After that point, patch mobility increases slightly with 

increasing k4a. We note, however, that in the 3D particle-based simulations, the transition 

from a mobile to static patch appears to take place at a slightly higher values of k4a 

(between 0.005 and 0.01 m2/s), and for each value of k4a, Dpatch is higher, in comparison 

with the 2D spatial Gillespie simulations. The good agreement between the full 3D and 

approximate 2D simulation results validates the use of the more computationally efficient 

2D simulations to investigate dynamics of the polarity patch. These results also provide 

further support for a mechanism for stabilizing the polarity patch by increasing the rate at 

which membrane-bound GEF and Cdc42T associate. 

 

Table 1. Model parameters  

Description Param. 2D Model 3D Model 

GEFc → GEFm k1a 0.1 s-1 0.07522 m s-1 

GEFm → GEFc k1b 10 s-1 10 s-1 

Cdc42Dm + GEFm → Cdc42T k2a 0.032 m2s-1 0.032 m2s-1 

Cdc42T → Cdc42Dm k2b 0.63 s-1 0.63 s-1 

Cdc42Dm + Cdc42T-GEF → Cdc42T k3 0.07 m2s-1 0.07 m2s-1 

GEFm + Cdc42T → Cdc42T-GEF k4a 0-2 m2s-1 0-2 m2s-1 

Cdc42T-GEF → GEFm + Cdc42T k4b 10 s-1 10 s-1 

Cdc42Dc → Cdc42Dm k5a 4 s-1 3.009 m s-1 
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Cdc42Dm → Cdc42Dc k5b 6.5 s-1 6.5 s-1 

GEFc + Cdc42T → Cdc42T-GEF k6 0.2 m2s-1 0.15 m3s-1 

Cdc42Dc + Cdc42T-GEF → Cdc42T k7 0.5 m2s-1 0.376 m3s-1 

Diffusion coefficient in cytoplasm Dcyto 10 m2s-1 10 m2s-1 

Diffusion coefficient on membrane Dmemb 0.0045 m2s-1 0.0045 m2s-1 

Membrane surface area Am 64 m2 64 m2 

Total Cdc42 Cdc42 5000 molecules 5000 molecules 

Total GEF GEF 15-700 molecules 15-700 molecules 

Membrane thickness Th 0.0083 m 0.0083 m 

Cell volume Vc 48.144 m3 48.144 m3 

Membrane volume Vm 0.53 m3 0.53 m3 

Vm/Vc  0.011 0.011 

Reactive radius  0.02 m 0.02 m 

 

 

Discussion 

How cells relocate polarity clusters at the cell membrane during different tasks such as 

migration [30,31], growth [32,33], sporulation [34] and mating [5,35] is a fundamental 

question that has not been fully understood. By means of computational modeling, we 

investigated how molecular noise can be exploited to promote lateral mobility of polarity 

clusters and how cells can regulate cluster mobility. We focused on dynamic polarization 

observed during the early stages of mating in budding yeast. When haploid cells are 

presented with pheromone from potential mating partners, the Rho-GTPase Cdc42 forms 

highly dynamic clusters that move across the membrane and stabilize in the direction of 

an adjacent cell of the opposite mating type.  

 

Efficient and accurate stochastic simulations 

To investigate the effect of molecular-level fluctuations on cluster mobility, we performed 

stochastic simulations of the biochemical network of Cdc42 polarization in yeast. 

Stochastic effects are most accurately captured using particle-based (microscopic) 
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simulations [16,26,27,36–38] or a convergent reaction-diffusion master equation [39]. 

However, the long-time scales associated with the movement of the polarity site make 

the use of such simulations computationally prohibitive to perform extensive 

investigations. We therefore used less accurate, but more computationally efficient 

simulations based on the spatial Gillespie method. Despite improvements on the 

accuracy of spatial Gillespie simulations [18–20], we found that simulations lost accuracy 

in the diffusion-limited regime at high molecular concentrations. To increase the accuracy 

of such simulations, we implemented concentration-dependent mesoscopic rate 

constants building on ideas from Yogurtcu et al [21]. An alternative approach that could 

also provide accurate and computationally efficient results is using hybrid microscopic-

mesoscopic simulations [40–45], for example coupling a microscopic formulation of the 

cell membrane with a mesoscopic representation of the cytosol. Such methods, of course, 

imply higher implementation complexity.  

 

Highly dynamic clusters 

Relocation of polarity clusters has commonly been explained via negative feedback 

mechanisms [46]. Negative feedback reactions can destabilize positive-feedback driven 

clusters resulting in travelling waves [30], or oscillations where the clusters disappear and 

reappear at different locations of the membrane [35,47]. Directed vesicle delivery is also 

a form of negative feedback that dilutes the polarity cluster and induces wandering motion 

[7,13,14]. Here, we document how biochemical noise can induce relocation of polarity 

clusters without an explicit negative feedback mechanism. Essential for noise-driven 

cluster motion are low abundances of limiting polarity factors and fast cycling of polarity 

factors between the cluster and the cytosol. Fast cluster-cytosol cycling can be promoted 

by reactions where polarity factors are directly recruited to the cluster.  

 

Regulation of cluster dynamics  

During yeast mating, stabilization of highly mobile clusters has been attributed to 

increased cytosolic levels of the polarity factor Cdc24, the Cdc42 GEF, as pheromone 

induced MAPK activity triggers its nuclear export [5]. Besides increased GEF abundance, 

our study suggests that accelerating the kinetics of second-order reactions at the 
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membrane involved in the activation of Cdc42 can stabilize highly dynamic clusters. 

Increasing the rate constants of such reactions seem to stabilize a mobile cluster by 

lengthening the abundance and dwell time of polarity factors at the patch. Interestingly, 

modulating the rate constant of one such reaction, association of membrane-bound 

Cdc42 and GEF, produced a switch-like transition from a mobile to a stable polarity patch. 

The Cdc42-GEF interaction, therefore, is a likely target of pheromone induced signaling 

during regulation of polarity cluster dynamics. Interestingly, this interaction, which in yeast 

cells is bridged by the scaffold protein Bem1, is thought to be regulated in another context 

involving cell-cycle control [48]. 

  

Further evidence highlights the importance of biochemical events taking place at the cell 

membrane, and properties of the cell membrane itself in the regulation of polarity cluster 

dynamics. In fission yeast cells, which also display mobile patches in the early stages of 

mating, cluster dynamics is known to be under the control of a GAP (Cdc42 inactivator 

molecule) that localizes at the cell membrane [49]. During spore germination of fission 

yeast, initial uniform growth is associated with highly dynamic Cdc42 clusters. Upon 

rupture of the outer spore wall, the clusters stabilize into a single cluster in the direction 

where rupture takes place, giving rise to directed growth [34]. Other studies have 

documented that membrane tension [50] and membrane curvature [51,52] can influence 

cluster stability. Additional mechanisms that may be used by cells to regulate biochemical 

events at the membrane and control cluster dynamics include crowding of signaling 

molecules [53,54], restricting the diffusion of molecules with cytoskeletal barriers 

[11,55,56] and confining molecules into high affinity subdomains [57].  

 

In summary, our results demonstrate the power of using accurate and efficient 

mesoscopic simulations to inform more detailed, but computationally costly, particle-

based simulations. Our studies also provided considerable insight into the mechanisms 

used by cells to harness random molecular behavior and regulate the dynamic properties 

of their polarity sites.  

 

Methods 
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Spatial Gillespie simulations  

In this coarse-grained approach, space is discretized into grid units, and the state of the 

system is given by the number of molecules of each species in each grid unit. The system 

evolves continuously in time according to the reaction-diffusion master equation, which is 

the spatial extension of the chemical master equation for well-mixed systems. We 

simulated individual realizations with the Next Subvolume method [17] which is an 

efficient implementation of the spatial version of the stochastic simulation algorithm [58]. 

We ran simulations on a square domain of size L discretized with a Cartesian mesh with 

grid element size h. In the spatial Gillespie algorithm, diffusion is treated as a reaction 

that results in a molecule transitioning from its current location to a neighboring grid unit. 

If there are n molecules of a given species in a particular grid unit, the propensity kjump for 

one of those molecules to transition to a neighboring grid unit is n D/h2, where D is the 

diffusion coefficient. In 2D, there are 4 neighbor cells and the total propensity of jump is 

4 n D/h2. The reaction propensities within a grid unit are estimated in the same way as 

the well-stirred Gillespie algorithm [58]. For example, the propensity of a second-order 

reaction for the association of the species A and B, is computed as kmeso nA nB where kmeso 

is the mesoscopic rate constant and nA and nB are the numbers of molecules A and B in 

the particular grid unit. The difference in the versions of the spatial Gillespie methods we 

use here are the different ways in which kmeso is computed.  

 

Derivation of the scale-dependent mesoscopic association rate kh in a 2D system 

Hellander et al. [19] derived a mesoscopic rate kh using the condition that the mean 

association time for two molecules diffusing in a specified domain in the spatial Gillespie 

representation is equivalent to the exact result for a microscopic description. The mean 

association time, micro, in the microscopic formulation for two molecules with reactive 

radius  diffusing on a disc with radius R [18] is:  

τ𝑚𝑖𝑐𝑟𝑜 =
π𝑅2

𝑘𝑚𝑖𝑐𝑟𝑜
[1 + α𝐹(ν)]        (1) 

where  

𝐹(ν) =
ln(1/ν)

(1−ν2)2 −
3−ν2

4(1−ν2)
,        (2) 

ν =
ρ

𝑅
,           (3)  
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kmicro is the microscopic association rate constant and the parameter  is defined as: 

α =
𝑘𝑚𝑖𝑐𝑟𝑜

2π𝐷
,          (4) 

where D is the sum of the diffusion coefficients of the two molecules. 

The mean association time in the mesoscopic formulation meso is estimated for a square 

domain of length L with square grid units of length h [19] as:  

τ𝑚𝑒𝑠𝑜 =
𝐿2

2π𝐷
log (

𝐿

ℎ
) +

0.1951𝐿2

4𝐷
+

(𝐿/ℎ)2

𝑘𝑚𝑒𝑠𝑜
.      (5) 

To determine kh, the condition meso = micro is enforced with L2 = R2. This leads to the 

following expression for kh: 

𝑘ℎ =
𝑘𝑚𝑖𝑐𝑟𝑜

ℎ2 [1 +
𝑘𝑚𝑖𝑐𝑟𝑜

𝐷
𝐺]

−1

        (6) 

where 

𝐺 =
1

2π
log (

ℎ

√πρ
) −

1

4
(

3

2π
+ 0.1951).       (7) 

Note that kh can be computed only if:  

1 +
𝑘𝑚𝑖𝑐𝑟𝑜

𝐷
𝐺 > 0.         (8) 

This implies a lower bound on h: 

ℎ > √π𝑒
3+2∗0.1951π

4
−

2π𝐷

𝑘𝑚𝑖𝑐𝑟𝑜𝜌.        (9) 

When h is below this bound, there is not kmeso for which the equality meso = micro holds. 

 

Mesoscopic dissociation rate kh
d 

The mesoscopic dissociation rate constant is derived so that the steady state 

concentrations of a reversible second-order reaction of a two-molecules system are the 

same in the mesoscopic and microscopic formulations [20]. The steady state is 

characterized by the ratio of the average unbound time to the total time, which can be 

computed as the ratio of the mean rebinding time to the sum of the mean rebinding time 

and the mean dissociation time. Therefore, the condition to be satisfied is: 

τ𝑚𝑒𝑠𝑜
𝑟𝑒𝑏𝑖𝑛𝑑

τ𝑚𝑒𝑠𝑜
𝑟𝑒𝑏𝑖𝑛𝑑+τ𝑚𝑒𝑠𝑜

𝑑 =
τ𝑚𝑖𝑐𝑟𝑜

𝑟𝑒𝑏𝑖𝑛𝑑

τ𝑚𝑖𝑐𝑟𝑜
𝑟𝑒𝑏𝑖𝑛𝑑+τ𝑚𝑖𝑐𝑟𝑜

𝑑 .        (10) 

 The mean rebinding time in the mesoscopic simulation meso
rebind

 was shown to be 

(L/h)2/kmeso and a good approximation for the mean rebinding time in the microscopic 

formulation micro
rebind in the 2D disk domain is L2/ kmicro. The mean dissociation times in 
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the mesoscopic (meso
d) and microscopic (micro

d) formulations are respectively 1/kmeso
d 

and 1/kmicro
d. After replacing kmeso and kmeso

d by kh and kh
d the equilibrium condition then 

reduces to: 

𝑘ℎ
𝑑 = 𝑘𝑚𝑖𝑐𝑟𝑜

𝑑 ℎ2𝑘ℎ

𝑘𝑚𝑖𝑐𝑟𝑜
.         (11) 

 

Mesoscopic concentration-dependent association rate kc 

The mesoscopic concentration-dependent rate kc is designed to increase simulation 

accuracy in systems with high concentrations. In such cases, it is reasonable to ignore 

the time for two molecules to diffuse into the same grid element, and to focus on the 

kinetics within a grid element.  We define the concentration-dependent rate constant kc 

as: 

𝑘𝑐 =
1

τ𝑐
,          (12) 

where c is the mean association time for two molecules diffusing in an area Ac 

corresponding to the mean free area between molecules of the more abundant reactant 

in the grid element. Ac is approximated as: 

𝐴𝑐 =
ℎ2

𝑛𝑚𝑎𝑥
,          (13) 

were nmax is the number of the most abundant species involved in the reaction. c is 

calculated for two molecules diffusing on a disc of area Ac. The concentration-dependent 

association rate is therefore:  

𝑘𝑐 =
𝑘𝑚𝑖𝑐𝑟𝑜

ℎ2
[1 + α𝐹(ρ/𝑅𝑐)]−1,       (14) 

where F is the same function defined in equation (2),  = kmicro/(2D), and 

 𝑅𝑐 =
ℎ

√π𝑛𝑚𝑎𝑥
.          (15) 

For crowded environments where Rc ≤ , we set kc = kmicro. Although technically there is 

not a lower bound on h, for realistic simulations h should be greater than .  

 

Mesoscopic dissociation rate kc
d 

We estimate the mesoscopic dissociation rate kc
d in a similar way as described above for 

a two-molecule system under the assumption that the pair of molecules diffuse on a 

domain of area Ac: 
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𝑘𝑐
𝑑 = 𝑘𝑚𝑖𝑐𝑟𝑜

𝑑 ℎ2𝑘𝑐

𝑘𝑚𝑖𝑐𝑟𝑜
.         (16) 

 

2D particle-based simulations  

The simulations performed to benchmark our methods (Fig 2) were carried out using our 

own custom written software. All particle-based polarity simulations (2D and 3D) were 

performed using Smoldyn [26,27]. 2D simulations were run on a square computational 

domain with periodic boundary conditions. In particle-based simulations space is 

continuous and time is discretized in intervals Δt. Molecules are considered point particles 

and their Brownian motion is simulated with the Euler-Maruyama method: If x(t), y(t) are 

the position coordinates of a given particle at time t moving in a 2D domain, the position 

coordinates at time t + Δt are calculated as: 

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + 𝑍𝑖√2𝐷𝑚Δ𝑡,       (17) 

𝑦(𝑡 + Δ𝑡) = 𝑦(𝑡) + 𝑍𝑗√2𝐷𝑚Δ𝑡       (18) 

where Zi, and Zj are independent random numbers drawn from a standard normal 

distribution, and Dm is the diffusion coefficient. Every time step, the new positions of all 

the particles are calculated.  

 

Bimolecular reactions occur with probability P = 1-exp(- Δt) during a time interval Δt, 

which can be approximated as P =  Δt for small Δt, when two reactants are within a 

distance  (reactive radius). 

   

The reaction probability for a first-order reaction with rate constant ki during an interval Δt 

is Pi = 1-exp(-ki Δt), which can be approximated as Pi = ki Δt for small Δt. When a 

dissociation event for two molecules in a complex occurs, one molecule is set at the 

position previously occupied by the complex and the second is placed at distance  apart 

from the first, with the orientation chosen randomly from a uniform distribution. 

     

Simulations of simple reversible and irreversible reactions (Fig 2) were performed with Δt 

≈ (0.1)2/(4Dtot) with Dtot=2Dm. The parameters of such simulations are given in the 

captions of the corresponding figures. 
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For simulations of the polarity establishment model we used the software Smoldyn 

[26,27]. The parameters for the polarity establishment model are given in Table 1. We 

present the reaction parameters as microscopic rate constants kmicro. For second-order 

reactions, the input to Smoldyn is the reaction probability P =  Δt, and  is related to kmicro 

as: 

λ =
𝑘𝑚𝑖𝑐𝑟𝑜

πρ2 .          (19) 

This equality follows as kmicro quantifies the reaction probability rate per unit area (/ ) 

for a pair of molecules A, B that are within the reactive distance :  

λ

πρ2 = 𝑘𝑚𝑖𝑐𝑟𝑜[𝐴]ρ[𝐵]ρ,        (20) 

where [A] = [B] = 1/( ).   

  

Reactions of the polarization model  

GEFc → GEFm       R-1a 

GEFm → GEFc       R-1b 

GEFm + Cdc42Dm → GEFm + Cdc42T     R-2a 

Cdc42T → Cdc42Dm      R-2b 

Cdc42T-GEF + Cdc42Dm → Cdc42T-GEF + Cdc42T   R-3 

Cdc42T + GEFm → Cdc42T-GEF     R-4a 

Cdc42T-GEF → Cdc42T + GEFm     R-4b 

Cdc42Dc → Cdc42Dm      R-5a 

Cdc42Dm → Cdc42Dc      R-5b 

Cdc42T + GEFc → Cdc42T-GEF     R-6 

Cdc42T-GEF + Cdc42Dc → Cdc42T-GEF + Cdc42T   R-7 

 

In the above reactions, GEFc and GEFm are cytosolic and membrane bound GEF, 

respectively. Cdc42Dc and Cdc42Dm are cytosolic and membrane-bound inactive Cdc42 

(Cdc42-GDP), respectively. Cdc42T is membrane-bound active Cdc42 (Cdc42-GTP). 

Cdc42T-GEF is the membrane-bound complex of Cdc42T and GEF.   
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Rate constants for the 2D stochastic polarization model  

The rate constants for the 2D model in Fig 3 A, presented in Table 1, were adapted from 

[13] which is a modified version of the model in [23]. That model is based on reaction-

diffusion equations and is therefore a macroscopic representation. On the other hand, our 

stochastic simulations are parameterized with microscopic rate constants. For first-order 

and second-order reaction-limited reactions, the macroscopic rate constants from the 

model in [13] can be used directly in our simulations. However, for 2D diffusion-influenced 

reactions the conversion is more complicated [16]. For the purposes of this work, we used 

the macroscopic rate constants in [13] as a first approximation for the microscopic 

parameters and performed careful studies varying the rate constants over several orders 

of magnitude. 

 

While the cell cytosol is a 3D compartment, in our 2D simulations the cytosol and the 

membrane are juxtaposed two-dimensional domains. This is a computationally efficient 

representation that neglects cytosolic gradients perpendicular to the membrane since, 

diffusion at the cytosol is fast compared to the timescale of reactions. To obtain equivalent 

rate constants for this purely 2D system we scaled cytosolic concentrations in the rate 

equations in [13] as:  

[𝐶𝑐]2𝐷 =
𝑉𝑐

𝐴𝑚
[𝐶𝑐]3𝐷,         (21) 

where [Cc]3D is the molar concentration of the cytosolic component Cc in the original 

equations, [Cc]2D is the concentration of Cc in the 2D cytosol, Vc is the volume of the cell 

cytosol and Am is the membrane area. 

  

In [13], concentrations at the membrane are expressed in molar units assuming that the 

membrane was a volumetric compartment with thickness Th. We therefore also scaled 

concentrations of species at the membrane as:  

[𝐶𝑚]2𝐷 = 𝑇ℎ[𝐶𝑚]3𝐷,         (22) 

where [Cm]2D
 is the concentration of the membrane-bound species Cm in units of 

mass/area, and [Cm]3D
 is the molar concentration of Cm. From the scaled reaction-diffusion 

equations we obtain the scaled 2D reaction rate constants k2D in terms of the rate 

constants k3D in [13]: 
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- Rate constants for first-order reactions that involve a transition from the cytosol to 

the membrane (R-1a and R-5a) are scaled as:  

𝑘2𝐷 = 𝑘3𝐷 𝑇ℎ 𝐴𝑚

𝑉𝑐
= 𝑘3𝐷𝜂.       (23) 

- Second-order rate constants for reactions taking place at the membrane (R-2a, R-

3, R-4a) are scaled as: 

𝑘2𝐷 = 𝑘3𝐷 1

𝑇ℎ
.         (24) 

- Second-order rate constants for reactions in which a cytosolic species reacts with 

a membrane-bound species (R-6, R-7) are scaled as: 

𝑘2𝐷 = 𝑘3𝐷 𝐴𝑚

𝑉𝑐
.         (25) 

- The rate constants for first-order reactions in which the reactant and the product 

are bound to the membrane (R-2b and R-4b) are unchanged. 

- Reactions 1b and 5b are the reverse of reactions 1a and 5a respectively, and to 

obtain the 2D rate constants it is necessary to multiply the corresponding 

volumetric rate constants by a factor of 1/. However, that factor cancels out with 

a factor of  present in the reaction-diffusion equations used in [13,23], which takes 

into account the difference between the cytosol volume and the effective volume 

of the membrane. Therefore, k1b and k5b are unchanged. 

  

The resulting 2D rate constants are presented in Table 1 using molecules as the unit of 

mass and m as the unit of length. 

 

We note one significant difference between the model parameters used here, and those 

used by McClure et al. We used a smaller number of total Cdc42 molecules based on the 

work of Watson et al. [59]. For our particle-based simulations, we used a smaller reaction 

radius  than in our previous publication [16] to make this value closer to the size of the 

reacting proteins. This modification reduced the rate of Cdc42 activation, affecting 

polarization. To compensate for this effect, we increased the rate constants of Reactions 

5a, 5b and 6 by a factor of 10.  
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3D particle-based simulations 

3D simulations were performed using Smoldyn [26,27]. Membrane-bound species 

diffuse on the surface of a sphere with radius R and cytosolic components diffuse within 

the interior of the sphere. The parameter values used in the particle-based 3D 

simulations are given in Table 1. 

  

The reaction rate constants were obtained from the 2D model. Rate constants for 

reactions that take place exclusively in the membrane do not need to be modified. These 

are Reactions 1b, 2a, 2b, 3, 4a, 4b and 5b. 

  

The rate constants for reactions in which a cytosolic species binds the membrane or a 

membrane-bound molecule (Reactions 1a, 5a, 6, and 7) are estimated from the 2D model 

using the scaling introduced in the Methods subsection “Rate constants for the 2D 

stochastic polarization model” ignoring the factor Th. With that scaling these 3D rate 

constants are obtained by multiplying the corresponding 2D rate constants by the factor 

Vc/Am. 

  

Although we report the microscopic rate constant kmicro for all reactions, in Smoldyn, 

second-order reactions are parameterized with the reaction probability P =  Δt. For 

reactions where both reactants are at the membrane, the relation between  and kmicro is 

the same as in the 2D simulations. 

  

For second-order reactions where a cytosolic molecule reacts with a membrane-bound 

molecule and the product is at the membrane (Reactions 6, 7)  is related to kmicro as: 

λ = 𝑘𝑚𝑖𝑐𝑟𝑜
3

2πρ3.         (26) 

This is the case as kmicro determines the reaction probability rate per unit area (/2) for 

a membrane-bound molecule Am and a cytosolic molecule Bc that are within a distance 

:  

λ

πρ2 = 𝑘𝑚𝑖𝑐𝑟𝑜[𝐴𝑚]ρ[𝐵𝑐]ρ,        (27)  
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where  [Am] = 1/(2), and [Bc] = 3/(23) which is the concentration of a molecule in a 

half sphere of radius .   

 

Quantification of clustering with H(r)  

Molecule clustering is commonly assessed by computing the cumulative distribution 

function (cdf) of inter-particle distances r, which properly normalized is known as Ripley’s 

K function K(r). This function is compared between the system of interest and a reference 

situation where particles are uniformly distributed (null hypothesis). In particular, H(r) is 

constructed by subtracting from K(r) the corresponding function for a uniform distribution 

of particles. Therefore, H(r) = 0 if the frequency of inter-particle distances within a 

separation r is the same as that of uniformly distributed molecules, indicating that there 

is no clustering. H(r) < 0 indicates dispersion; and H(r) > 0 indicates clustering or 

aggregation. The value of r where H(r) is maximum provides an estimate of the cluster 

length-scale [24]. We computed H(r) as described in [25]. 

 

Mean squared displacement (MSD) and effective polarity cluster diffusivity (Dpatch) 

After a polarity cluster has formed, the distribution of active Cdc42 is translated to the 

center of the domain to reduce border effects, and the centroid of the distribution is 

recorded every 1min. The centroid of the patch is calculated accounting for the toroidal 

geometry of the domain resulting from the periodic boundary conditions. The mean 

squared displacement (MSD) for a particular time interval Δti is computed from all centroid 

trajectories over time intervals of length Δti from multiple simulations. We discarded 

centroid jumps over the domain boundary by breaking trajectories containing jumps larger 

than a maximum jump maxjump into sub-trajectories containing only jumps smaller than 

maxjump. We empirically set maxjump = 6m from visual inspection of centroid trajectories. 

Each MSD curve is obtained from 50 simulations of 1hr each except for S4 Fig where we 

used 5 simulations. The effective diffusivity of the polarity cluster (Dpatch) can be obtained 

by fitting the equation MSD(Δti) = 4Dpatch Δti  to the MSD data, where Δti is a particular 

time interval, and a reflects the degree of anomalous diffusion. In practice we took 

logarithms to the data and fit the equation log(MSD(Δti)) = log(4Dpatch ) +  log(Δti) using 

only the first data points that showed a linear behavior in a log-log plot. The MSD during 
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the smallest interval computed (1min) reflects rapid variations in the position of the 

centroid within the polarity cluster and do not contribute to the long scale displacement of 

the distribution (see for example Fig 5B). We therefore subtracted MSD(1min) to all MSD 

data before estimating Dpatch. MSDs in the 3D particle-based simulations were computed 

from geodesic displacements of the cluster on the spherical surface. 

 

Coefficient of variation of the distribution of active Cdc42T: CVpatch 

CVpatch was computed as a weighted average over space of the local coefficient of 

variation over time of the amount of Cdc42T. The average over space is weighted by the 

mean local abundance of Cdc42T: 

𝐶𝑉𝑝𝑎𝑡𝑐ℎ =
∑ 𝐶𝑉𝑗

𝑇𝐴
𝑗 ⟨𝐶𝑑𝑐42𝑇𝑗⟩

𝑇

∑ ⟨𝐶𝑑𝑐42𝑇𝑗⟩
𝑇𝐴

𝑗

.        (28) 

Here CVj
T is the mean divided by the standard deviation over a time interval T of the 

amount of Cdc42T at location j. <Cdc42Tj>T is the average amount of Cdc42T at location 

j over a period of time T. The space average is computed over the whole simulation 

domain (A) as Cdc42T is mainly located at the polarity site. The time averages are 

computed over a short period T = 1 min to ensure the mean distribution of Cdc42T does 

not relocate significantly. One estimation of CVpatch is obtained from a single simulation 

that has reached steady state with samples taken every second to compute time 

averages. In Figs 6 G,H we plotted the mean and standard deviation (error bars) from 5 

independent measurements of CVpatch.    

  

Dwell times at the patch 

To compute the dwell time of Cdc42 at the patch, we introduced in the model additional 

tagged Cdc42 species (Cdc42m
tagged, Cdc42Ttagged, Cdc42Ttagged-GEF) that have the 

same behavior as the untagged versions, except that if Cdc42m
tagged jumps from the 

membrane to the cytosol it converts into untagged Cdc42Dc. Simulations are initialized 

with no tagged species, and are run until the distribution of polarity factors reaches steady 

state. At this point, Cdc42m, Cdc42T, Cdc42T-GEF are converted into the tagged versions 

in a region surrounding the polarity patch and we record the decay in the amount of the 

tagged molecules. The same idea is used to estimate the dwell time at the patch of GEF 
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(introducing GEFm
tagged

 and Cdc42T-GEFtagged). For Cdc42, we ignored the initial rapid 

decay coming from membrane detachment of inactive Cdc42. The dwell time at the patch 

is obtained by fitting an exponential decay function to the data. We reported the mean 

and standard deviation (error bars) from 10 or 30 independent measurements of the dwell 

time. 

 

Code availability 

The code used to generate all the data and figures is available at: 

https://github.com/samuramirez/stochastic-exploratory-polarization 
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Figure S1. Fluctuations around the mean for spatial Gillespie simulations of the reactions 

A+B → C and A+B ↔ C using the mesoscopic rates kh and kc are compared particle-based 

results. The mean as a function of time is shown in Fig 2 of the main text. We present the standard 

deviation of total number of species A as a function of time. (A-D) show spatial Gillespie 

simulations using the mesoscopic rate kh with initial low abundance of reactants in (A,B) (total A 

= total B = 5, total C = 0 at t = 0) and initial high abundance (total A = total B = 5000, total C = 0 

at t=0) in (C-D). (E-H) show corresponding simulations to (A-D) but using the mesoscopic rate kc. 

In all the simulations, the degree of diffusion control is kmicro/Dtot = 50, with Dtot = 2D and D = 

0.0025m2/s. The size of the domain is L = 1m,  = 0.005m. For the reversible reaction A+B 

↔ C, the microscopic dissociation rate constant kd
micro is 1/s in panels (B, F), and 10/s in panels 

(D, H). 

 

Parameter exploration to enable polarization with low GEF numbers 

We varied different rate constants with goal of finding parameter sets that enable 

polarization with low GEF numbers. To evaluate if the distribution of active Cdc42 was 

polarized for a given parameter set we quantified clustering with H(r = 1.1 m) (see 

Methods and Main Text). In most cases, a value of H(r = 1.1 m) > 1.5 indicated there 

was polarization, but when the numbers of active Cdc42 are low the value of H can 

fluctuate substantially. Therefore, we also used the total amount of active Cdc42 as an 

additional criteria for polarization. For cases of highly variable clustering, amounts of 

active Cdc42 close to zero indicated no polarization.  

Parameter changes that resulted in polarization with 100 GEF molecules or less were 

decreasing k2b, decreasing k4b, increasing k5a and increasing k7.  
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Figure S2. Plots of H(r = 1.1m) (left panels) and total active Cdc42 (right panels) as a function 

of GEF molecules for different values of various model parameters. In each panel the rate 

constant in the title of the figure is varied as indicated in the legend. For each parameter set, the 

simulations were initialized with an unpolarized random distribution with all GEF and Cdc42 in the 

cytosol and 10 min were simulated to provide enough time for the system to polarize. Mean and 

standard deviation (error bars) were calculated sampling every 30s for the last 5min of each 

simulation with data from 3 independent simulations.    

 

Testing how different rate constants affect patch mobility  

As described in the main text the parameter k4a has a strong influence on patch mobility. 

In our initial parameterization, the value of k4a is relatively high, making the patch stable 

and obscuring the effect of other parameters. For example, changing k3 from 1 m2/s to 

zero (in the updated model that includes Reaction 7) does not affect patch mobility 

significantly (S3 A Fig). However, when the value of k4a is set to zero, for a range of GEF 

abundances, changing k3 from its original value of 0.07 m2/s to zero increases patch 

mobility significantly (S3 B Fig). In S3 C Fig, for 300 GEF, we show that the change in 

patch mobility takes place gradually for different values of k3.  

To test the effect of patch mobility of other rate constants, we started with the following 

parameterizations of the updated model (including Reaction 7) which show different levels 

of patch mobility:   

- k4a = 2 m2/s with GEF numbers of 50 (high mobility) 100 (medium mobility) and 

300 (low mobility). These results are shown on the left column of S4 Fig.  

 

- k4a = 0 with GEF numbers of 150 (high mobility) 250 (medium mobility) and 400 

(low mobility). These results are shown on the right column of S4 Fig. 

In S4 Fig each row corresponds to a particular rate constant tested as indicated on the x 

axis. We show data for all rate constants except for k2a and k4a which are presented in 

the Main Text and k3 which is evaluated in S3 Fig.  

Varying the value of most of the parameters did not substantially affect patch mobility. 

Modifying k5b (the rate constant for Cdc42D to transition from the membrane to the 

cytosol) showed a moderate effect on patch mobility for k4a = 2 m2/s. The effect was less 
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robust when k4a = 0, in this case changing k5b tended to destroy polarity (missing points 

in the curves).  

 

 

 

Figure S3. The rate constant k3 affects patch mobility when k4a = 0. (A) Effective diffusivity of 

the patch (Dpatch) as a function of total available GEF in the updated model (including Reaction 7) 

for k3 = 0 and k3 = 1 m2/s. (B) Similar to (A) except with k3 = 0 and k3 = 1 m2/s keeping k4a = 0. 

(C) Effective diffusivity of the patch (Dpatch) as k3 is varied with 300 GEF molecules. Error bars are 

standard errors from the least-squared fit used to compute Dpatch.  
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Figure S4. Effective diffusivity of the polarity patch as a function of different parameters 

(indicated in the x-axis). The panels on the left are for k4a = 2 m2/s and for the ones on the right 
k4a = 0. Simulations were run with different GEF abundances as indicated. Missing points in each 
panel correspond to simulations that did not show robust polarization.  Each data point was 
obtained from 5 simulations of 3600s each as described in the Methods. Error bars are standard 
errors from the least-squared fit used to compute Dpatch.  
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